Sharath Matada

Email: sharath.matada@gmail.com
Portfolio: www.sharathmatada.com
Github: https://github.com/sharath-matada

Phone no: +1(858)319-6381

EDUCATION

University of California, San Diego

 $Master\ of\ Science\ -\ Mechanical\ and\ Aerospace\ Engineering(Robotics)$

La Jolla, United States of America September, 2022 - Aug, 2024

Relevant Coursework:

 $ECE276A:\ Sensing\ and\ Estimation\ in\ Robotics,\ ECE276B:\ Planning\ and\ Learning\ in\ Robotics,\ ECE271A:\ Statistical\ Learning,\ MAE204:\ Robotics,\ MAE207:\ Soft\ Robotics$

National Institute of Technology, Karnataka(NITK)

Bachelor of Technology - Mechanical Engineering

Surathkal, India August 2014 - May, 2018

Relevant Courses: Automatic Control Engineering, Robotic Systems

Additional Courses: Deep Learning using PyTorch(IBM), Model Predictive Control

PUBLICATIONS

• Generalizable Motion Planning via Operator Learning

International Conference on Learning Representations(ICLR), 2025 Sharath Matada*, Luke Bhan*, Yuanyuan Shi, Nikolay Atanasov arXiv

• Reconstructing Robot Motion from Video

Submitted to Science Robotics, Under Review

Jingpei Lu, **Sharath Matada**, Yiyu Chen, Florian Ritcher, Quan Nguyen, Michael Yip Preprint

SKILLS SUMMARY

- Robotics: Optimal Control, Path Planning(A*,RRT, RRT*), Model Predictive Control for Quadrupeds, Kalman Filter, Particle Filter, Visual-Inertial Extended Kalman Filter
- Machine Learning: Statistical Learning, Supervised and Self-Supervised Learning, Physics Informed Learning, Reinforcement Learning, Neural Operators for solving PDEs
- Programming Languages: Python, C, C++
- Simulation: CoppeliaSim, MuJoCo, PyBullet
- Machine Learning Tools: Pytorch, Tensorflow, JAX, Kubernetes
- Others: Linux, Arduino, Raspberry Pi, MATLAB, Labview, GIT, MS Office

EXPERIENCE

$\circ\,$ Senior Engineer, Horizon Surgical Systems, Inc.

Oct 2024 - Current

- * Designing next-generation manipulators and operator input devices for robotic ophthalmic surgery
- * Developing a pipeline for data collection, calibration, and system characterization of robotic manipulators
- * Deployed calibrated kinematics on manipulator subsystems, improving overall accuracy

o Graduate Research Assistant, Existensial Robotics Lab

Jul 2023 - Oct 2024, Advisor: Prof. Nikolay Atanasov, Associate Professor

- * Developed a novel learning-based motion planning framework using **neural operators**, enabling robust generalization to previously unseen environments by mapping **environment representations** to **value functions** on the fly.
- * Developed neural operator architectures that generate ϵ -consistent heuristic functions to boost the efficiency of search-based motion planning algorithms like A* to achieve close to optimal paths on large real-world maps
- * Co-led authorship on a research paper detailing this approach, currently accepted for publication at ICLR 2025

o Senior Robotics Engineer, Systemantics (Collaborative Robotic Arm Maker)

Jun
 2018 - Aug 2022, Advisor: Dr. Jagannath Raju, CTO

* Motion Control

- $\cdot \ \ \text{Designed feedback controller and modeled friction, inertial and gravity effects for a robotic manipulator}$
- · Reduced visible vibrations using flexible joint control with full-state feedback

* Safety for Human-Robot Interaction

- \cdot Designed a disturbance observer to detect collisions with external environment to improve safety for human-robot collaboration
- · Implemented an admittance controller to achieve kinesthetic teaching (intuitive method of teaching the robot by physically applying forces to the robot to move to a particular point in space)

* Robot Kinematics and Dynamics

- · Optimized kinematic architectures of hybrid mechanisms (combination of serial and parallel linkages) for maximum dexterity and minimum intertial load on each joint
- · Characterized the effect of joint elasticity coupled with parallel mechanisms on robot performance in task space

* Software Design

- · Designed a finite state machine and implemented a state estimator for robot joint
- · Implemented trapezoidal commutation for a BLDC motor in a robot joint

ECE276A: Sensing and Estimation in Robotics

University of California, San Diego

- * Conducted data synchronization between IMU and stereo camera image features for accurate and efficient measurements
- * Implemented EKF prediction for real-time positioning and orientation updates using SE(3) kinematics and IMU measurements
- * Developed EKF update step to correct landmark locations using Jacobian of observation model with visual observations
- * Simultaneously corrected car pose and landmark locations using observation model Jacobian w.r.t. car pose, feature locations
- * Analyzed sensitivity to motion and observation model noise and generated an environment map achieving 95% accuracy

ECE276B: Planning and Learning in Robotics

University of California, San Diego

- * Implemented a collision-checking mechanism for a robot's safe navigation in 3D maze-like environments towards the goal
- * Implemented and assessed weighted-A* and RRT, RRT* algorithms for the robot's goal-reaching performance
- * RRT achieved 30 % faster and more memory-efficient performance, while A* showed superior path quality with shorter path
- * Provided insights into expanded nodes, sampling method heuristic selection (Euclidean, Manhattan distance), aiding algorithm selection based on complexity, efficiency trade-offs, and graph creation efficiency in the sampling-based approach

Internship Experience

ABB Robotics Bengaluru, India

Intern

May 2017 - July 2017

- * Developed a robotic system where an anthropomorphic robotic arm was attached to a 6-DOF IRB1600 ID ABB Industrial Robot to explore grasping.
- * Was involved in the mechanical design, programming and basic electronic design of the system.

NMCAD Lab, Aerospace Department, Indian Institute of Science

Bengaluru,India

IASc-INSA-NASI Joint Academies' Research Fellow (Summer Research Fellowship)

May 2016 - July 2016

- * Worked on Design of Flapping-wing type Micro Aerial Vehicles using self-actuated composites
- * The design was based on the flapping pattern of the rufous hummingbird (Selasphorus Rufus) with the mechanism to allow 2 degrees of freedom for figure 8 like configuration

Teaching Experience

MAE3: Introduction to Mechanical Design Graduate Teaching Assistant

University of California, San Diego

0ct 2022 - Dec 2022

- * Designed bearing devices to demonstrate basic concepts of under-constraint, exact constraint and over-constraint bearing designs to students
- * Conducted physics review for MAE3 students
- st Conducted weekly office hours at the Design Studio

ACTIVITIES

Volunteer at Youth for Seva

A not-for-profit NGO in India supporting schools and other organisations in social sector

Amateur Runner and Cyclist

A weekend activity to explore new places and test personal limits

Former Secretary of Association for Computer Machinery, Student Chapter, NITK

Managed club activities such as the project expo

References

Dr.Jagannath Raju

jagann ath @system antics.com.

Prof. Nikolay Atanasov

CTO, Systemantics India Pvt. Ltd

 $^{\circ}$ natanasov@ucsd.edu

Associate Professor, UCSD